Algebraic and combinatorial structures on pairs of twin binary trees

نویسنده

  • SAMUELE GIRAUDO
چکیده

We give a new construction of a Hopf algebra defined first by Reading [Rea05] whose bases are indexed by objects belonging to the Baxter combinatorial family (i.e., Baxter permutations, pairs of twin binary trees, etc.). Our construction relies on the definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid, and on a RobinsonSchensted-like correspondence and insertion algorithm. Indeed, the Baxter monoid leads to the definition of a lattice structure over pairs of twin binary trees and the definition of a Hopf algebra. The algebraic properties of this Hopf algebra are studied and among other, multiplicative bases are provided, and freeness and self-duality proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic and combinatorial structures on Baxter permutations

We give a new construction of a Hopf subalgebra of the Hopf algebra of Free quasi-symmetric functions whose bases are indexed by objects belonging to the Baxter combinatorial family (i.e. Baxter permutations, pairs of twin binary trees, etc.). This construction relies on the definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid, and on a Robinson-Schensted-like ...

متن کامل

Permutrees

Abstract. We introduce permutrees, a unified model for permutations, binary trees, Cambrian trees and binary sequences. On the combinatorial side, we study the rotation lattices on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian and boolean lattices and the classical maps between them. On the geometric side, we provide both the vertex and facet descriptions...

متن کامل

Probabilistic analysis of the asymmetric digital search trees

In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...

متن کامل

MAGMA-JOINED-MAGMAS: A CLASS OF NEW ALGEBRAIC STRUCTURES

By left magma-$e$-magma, I mean a set containingthe fixed element $e$, and equipped by two binary operations "$cdot$", $odot$ with the property $eodot (xcdot y)=eodot(xodot y)$, namelyleft $e$-join law. So, $(X,cdot,e,odot)$ is a left magma-$e$-magmaif and only if $(X,cdot)$, $(X,odot)$ are magmas (groupoids), $ein X$ and the left $e$-join law holds.Right (and two-sided) magma-$e$-magmas are de...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012